Эукариотическая клетка животная и растительная рисунок

Животные

Эукариотическая клетка – определение, характеристики, структура и примеры

Определение эукариотических клеток

Характеристика эукариотических клеток

Эукариотические клетки содержат множество структур, называемых органеллами, которые выполняют различные функции в пределах клетка, Примерами органелл являются рибосомы, которые делают белки, эндоплазматическая сеть, который сортирует и упаковывает белки, и митохондрии, которые производят энергию молекула аденозинтрифосфат (АТФ). У них также есть настоящее ядро, которое содержит ДНК генетического материала и окружено ядерной оболочкой. Все органеллы стабилизируются и получают физическую поддержку через цитоскелет, который также участвует в отправке сигналов из одной части ячейки в другую. В эукариотических клетках цитоскелет состоит в основном из трех типов филаментов: микротрубочек, микрофиламентов и промежуточных филаментов. Гелеобразное вещество, которое окружает все органеллы в клетке, называется цитозоль.

На рисунке ниже показана структура эукариотической клетки; это клетка животного, Ядро и другие органеллы показаны. Цитозоль – это синее вещество, окружающее все органеллы. Вместе цитозоль со всеми органеллами, кроме ядра, сгруппированы как цитоплазма.

Эукариотический клеточный цикл

клеточный цикл это жизненный цикл клетки. В течение этого цикла он растет и делится. Контрольные точки существуют между всеми этапами, так что белки могут определить, готова ли клетка начать следующую фазу цикла.

Покой (G0)

Покой, также известный как старение или покой, – это фаза, в которой клетка активно не делится. Он также известен как Gap 0 или G0. Эта стадия считается началом клеточного цикла, хотя это тот, который клетки могут достичь, а затем прекратить делиться на неопределенный срок, что завершает клеточный цикл. Печень, желудок клетки почек и нейрон – все это примеры клеток, которые могут достигать этой стадии и оставаться в ней в течение длительных периодов времени. Это также может произойти, когда ДНК клетки повреждена. Однако большинство ячеек вообще не переходят в стадию G0 и могут делиться бесконечно на протяжении всей жизни организм.

интерфаза

В интерфаза клетка растет и усваивает питательные вещества при подготовке к делению. Интерфаза занимает около 90 процентов клеточного цикла. Он состоит из трех частей: Gap 1, Synthesis и Gap 2.

Митоз (М)

Митоз или М-фаза, когда клетка начинает организовывать свою дублированную ДНК для разделения на две части. дочерние клетки, Хромосомы разделяются так, что одна из каждой хромосомы попадает в каждую дочернюю клетку. Это приводит к тому, что дочерние клетки имеют идентичные хромосомы с родительской клеткой. Сам Митоз делится на профаза, метафазы, анафаза, а также телофаза, которые отмечают различные точки в процессе разделения ДНК. Затем за митозом следует процесс, называемый цитокинез, в течение которого клетка разделяет свои ядра и другие органеллы при подготовке к делению, а затем физически делится на две клетки.

Примеры эукариотических клеток

Растительные клетки

Растение клетки уникальны среди эукариотических клеток по нескольким причинам. Они имеют усиленные, относительно толстые клеточные стенки, которые сделаны в основном из целлюлозы и помогают поддерживать структурную опору в растении. каждый растительная клетка имеет большой вакуоль в центре, что позволяет ему поддерживать тургор давление Это давление, вызванное наличием большого количества воды в клетке, и помогает поддерживать растения в вертикальном положении. Растительные клетки также содержат органеллы, называемые хлоропластами, которые содержат молекулу хлорофилл, Эта важная молекула используется в процессе фотосинтез, когда растение производит свою собственную энергию из солнечного света, углекислого газа и воды.

Грибковые клетки

Как и растительные клетки, грибковые клетки также имеют клеточная стенка, но их клеточная стенка состоит из хитин (то же вещество, найденное в экзоскелетах насекомых). У некоторых грибов есть перегородки, которые являются отверстиями, которые позволяют органеллам и цитоплазме проходить между ними. Это делает границы между различными ячейками менее четкими.

Клетки животных

Животные клетки не имеют клеточных стенок. Вместо этого они имеют только плазматическую мембрану. Отсутствие клеточной стенки позволяет клеткам животных формировать множество различных форм, а также позволяет процессам фагоцитоз «Клеточная еда» и пиноцитоз «Выпить клетки» произойдет. Животные клетки отличаются от растительных клеток тем, что они не имеют хлоропластов и имеют меньшие вакуоли вместо больших центральная вакуоль.

протозоа

Простейшие – это эукариотические организмы, состоящие из одной клетки. Они могут передвигаться и есть, и они переваривают пищу в вакуолях. У некоторых простейших много ресничек, которые представляют собой маленькие «руки», которые позволяют им передвигаться. У некоторых также есть тонкий слой, названный pellicle, который обеспечивает поддержку клеточная мембрана.

викторина

1. Каковы три части интерфазы в клеточном цикле?A. Разрыв 1, Синтез, Разрыв 2B. Покой, Синтез, МитозC. Разрыв 1, Митоз, Разрыв 2D. Покой, разрыв 1, разрыв 2

Ответ на вопрос № 1

верно. Три части интерфазы – это Gap 1 (G1), фаза роста, Synthesis (S), во время которой реплицируется ДНК, и Gap 2 (G2), вторая фаза роста в процессе подготовки к деление клеток, Молчание (G0) наступает до интерфазы, в то время как митоз (M) наступает после интерфазы.

2. Какая возможная характеристика эукариотической клетки?A. Наличие клеточной стенки из целлюлозыB. Наличие клеточной стенки из хитинаC. Не имеет клеточной стенкиD. Все вышеперечисленное наблюдается в эукариотических клетках.

Ответ на вопрос № 2

3. Какие этапы клеточного цикла в порядке?A. G1, M, G2, S, G0B. G0, G1, G2, S, MC. G0, G1, S, G2, MD. M, S, G2, G1, G0

Ответ на вопрос № 3

С верно. Клеточный цикл начинается в G0, или в покое. Затем он проходит через три части интерфазы: разрыв 1, синтез и разрыв 2. Последней стадией клеточного цикла является митоз.

Источник

Эукариотическая клетка строение, свойства и функции (Таблица)

Эукариоты или ядерные, — это надцарство живых организмов, клетки в которых содержится ядро. Все организмы, кроме прокариот (бактерий и архей), являются ядерными. Вирусы и вироиды не относятся ни к прокариотам, ни эукариотам.

Таблица строение эукариотической клетки и функции

Строение и свойства эукариотической клетки

Органоиды, характерные для животной и растительной клеток

— Изолируетклетку от окружающей среды.

— Обеспечивает обмен веществ и энергии между клеткой и внешней средой, движение клеток и сцепление их друг с другом.

— Соединяет клетки в ткани.

— Клеточная мембрана обладает избирательной проницаемостью, регулирует поступление веществ в клетку, водный баланс, выведение продуктов обмена.

— Участвует в фагоцитозе и пиноцитозе.

— Большинство мембранных белков служат катализаторами химических реакций, осуществляют транспорт веществ или являются рецепторами

— Жидкая среда клетки для химических реакций.

— Участвует в передвижении веществ.

— Поддерживает тургор клетки.

— Механическая функция, за счет цитоскелета

— Хранение наследственной информации в хромосомах.

— Регуляция синтеза белка и процессов происходящих в клетке.

— Синтез РНК (иРНК, тРНК, рРНК), а также сборка рибосом.

— Руководит процессами самовоспроизведения и процессами развития организма

Эндоплазматическая сеть (ретикулум)

— Синтез белка на рибосомах.

— Транспорт веществ по цистернам и трубочкам.

— Участвует в синтезе липидов, белок не синтезируется.

— Остальные функции, сходные с шероховатым ретикулум

Мельчайшие органоиды клетки диаметром около 20нм. Рибосомы состоят из двух неравных субъединиц (частиц): большой и малой. В состав рибосомы входят рибосомальная РНК и белки. Синтезируются в ядрышке. Объединяются вдоль иРНК в цепочки, образуя полисому

Биосинтез первичной структуры белка по принципу матричного синтеза

Представляет собой окруженный одинарной мембраной пузырек диаметром 0,2-0,8мкм, имеет овальную форму. Содержит набор пищеварительных ферментов, синтезированных на рибосомах. Образуется в комплексеГольджи. Прочная мембрана лизосом препятствует проникновению ферментов в цитоплазму. Входит в состав единой мембранной системы клетки

— Энергетический и дыхательный центр клеток.

— Освобождение энергии в процессе дыхания.

— «Запасание» энергии в виде молекул АТФ. Источником энергии являются органические вещества, окисляющиеся под действием ферментов до СO2 и Н2O

Участвуют в делении клеток животных и низших растений, образуя веретено деления

Аппарат (комплекс) Гольджи

Система уплощенных цистерн (трубочек, полостей), ограниченных двойными мембранами, образующих по краям пузырьки (диктиосомы). В растительных клетках цистерны способны расширяться и превращаться в крупные вакуоли. Входит в единую мембранную систему клетки

— Участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки.

— Вещества упаковываются в пузырьки.

— Образуют опорно-двигательную систему, называемую цитоскелетом.

— Способствуют току цитоплазмы в клетках

Обеспечивают передвижение некоторых одноклеточных организмов и ток жидкости в организмах, удаление частичек пыли (дыхательный реснитчатый эпителий)

Служат для движения одноклеточным организмам, сперматозоидам,зооспорам

Непостоянные структуры цитоплазмы. Плотные включения в виде гранул

Содержат запасные питательные вещества (крахмал, жиры, белки, сахар)

Органоиды, характерные только для растительных клеток

В мембранах гран находится хлорофилл, придающий зеленую окраску и обеспечивающий протекание световой фазы светосинтеза

Округлые, бесцветные органоиды, внутренняя мембрана образует 2-3 выроста. На свету преобразовываются в хлоропласты

Читайте также:  Преимущества костей позвоночных животных

Служат местом отложения запасных питательных веществ, чаще всего крахмала

Придают лепесткам цветков, плодам и прицветным листьям окраску, привлекают насекомых-опылителей

Клеточная оболочка (стенка)

Состоит из целлюлозы, имеет поры. Имеется в клетках грибов, состоит из хитина

Защищает клетку от внешних воздействий, придает прочность, является скелетом растения

Вакуоль, характерна только для растительных клеток

Мембранная полость, заполненная клеточным соком. Вакуоль является производной эндоплазматической сети. Клеточный сок является водным раствором органических веществ: органических кислот, сахара, солей, белков, дубильных веществ, алкалоидов, пигментов и так далее.

— регуляция водно-солевого обмена;

— поддержание тургорного давления;

— накопление продуктов обмена веществ и запасных веществ;

— выведение из обмена токсичных веществ

_______________

Источник информации:

1. Биология в таблицах и схемах / Спб. — 2004.

2. Биология: Справочник для старшеклассников и поступающих в вузы/ Т.Л.Богданова —М.: 2012.

Источник

Структура эукариотов и цитоплазмы

Строение эукариотической клетки включает в себя цитоплазму, где находятся различные органоиды, плазматическую мембрану и ядро. Эукариоты могут входить в состав многоклеточных организмов: растений, животных и грибов либо образовывать одноклеточные организмы (простейшие).

Цитоплазмой называется все внутреннее содержимое клетки, не считая ядра. Она состоит из полужидкой структуры — гиалоплазмы, в которой находятся органоиды или органеллы (являются постоянным содержимым) и включения (временные элементы).

Цитоплазма эукариотов находится в постоянном движении, которое называется циклоз. Если оно прекращается, эукариот погибает.

В цитоплазме происходит объединение компонентов клетки, обеспечивается их взаимодействие; создается среда для протекания биохимических реакций, а так же для функционирования и обитания органелл.

Органеллы клетки

Являются постоянными структурами и находятся в цитоплазме. Некоторые органеллы есть только у растений или животных. К органоидам клетки относятся:

Эндоплазматическая сеть (ЭПС)

Состоит из комплекса мембран и присуща только эукариотам. Выделяют гладкую (агранулярную) и шероховатую (гранулярную) ЭПС. Поверхность гранулярной усыпана рибосомами, из-за этого и возникает шероховатый рисунок. Главной функцией обеих разновидностей ЭПС является синтез и транспортировка веществ. Только шероховатая отвечает за синтез белков, а гладкая — углеводов и жиров. Также в эндоплазматической сети образуется аппарат Гольджи.

Комплекс Гольджи

Состоит из нескольких своеобразных полостей — мембран, которые называются цистернами. Комплекс Гольджи тесно связан с ЭПС. Вещества через мелкие пузырьки (визикулы) попадают в аппарат, где протекает аккумулирование, изменение, отделение и упаковка поступивших белков, липидов и углеводов.

Лизосомы и вакуоли

Лизосомы относятся к одномембранным органоидам и выглядят как мелкие сосуды, заполненные ферментами. Характерны только для животных. Ферменты расщепляются на ЭПС, проходят через комплекс Гольджи и трансформируются в лизосомы, которые переваривают органические вещества, уничтожают ненужные структуры.

Вакуоли — одномембранные органоиды, которые заполнены смесью органических и неорганических веществ. В растительных клетках существует кластер вакуолей мелкого размера, которые со временем объединяются в одну крупную. В них накапливается и хранится вода, происходит водно-солевой обмен.

Митохондрии, пластиды и рибосомы

Митохондрии — органеллы, которые имеют разную форму. Количество их может варьироваться. Митохондрии осуществляют биосинтез АТФ (аденозинтрифосфорной кислоты).

Пластиды — органеллы, которые содержатся только в растениях.

Существует несколько типов: хлоропласты, участвующие в процессе фотосинтеза; лейкопласты — накапливают и сохраняют питательные вещества; хромопласты окрашивают цветы и плоды растений в разные цвета, что привлекает животных-опылителей и распространителей семян.

Рибосомы — немембранные органоиды, которые участвуют в синтезе белка.

Клеточный центр (центросома)

Характерен только для клетки животных; обычно состоит из двух центриолей.

Центриоль — немембранный белковый органоид, представляет собой цилиндр, образованный 9 триплетами микротрубочек. К функциональным особенностям клеточного центра относится формирование веретена деления.

Плазматическая мембрана и её функции

Клеточная мембрана по-другому называется «плазмалемма» или «плазматическая мембрана». Основу составляет двойной слой жиров. Молекула липида состоит из головки, которая является гидрофильной, и гидрофобного хвостика. В результате такого строения хвост не соприкасается с жидкостью, а головки повернуты к ней.

Таким образом формируется парный липидный слой. В нем полярные головки располагаются снаружи и устремлены к внешнему окружению и цитоплазме, а неполярные хвостики повернуты внутрь. Наружный слой конструкции является гидрофильным, при этом внутренняя часть ее гидрофобна.

В состав плазмалеммы входит двойной слой жиров-липидов и 3 вида белков: находящихся на поверхности, погруженных в нее частично и пронизывающих мембрану насквозь. Они присоединяются к головкам липидов или проникают внутрь молекулы и взаимодействуют с хвостиками.

Клеточная мембрана поддерживает целостность клетки, защищая ее от внешней среды. У многоклеточных организмов плазмалемма способствует ассимиляции всего организма. Итак, основные функции клеточной мембраны:

Состав ядра

Деление эукариотных клеток происходит посредством митоза — деления материнской клетки на 2, и передачи дочерним родительского генетического кода.

Только половые клетки делятся посредством мейоза. Отличительной чертой мейоза является образование эукариот с новым набором хромосом.

Источник

Прокариоты и эукариоты – основные понятия

Прокариоты – это доядерные одноклеточные организмы.

Именно они стояли у истоков эволюции, дали впоследствии ядерные организмы. Это бактерии.

Эукариоты – это ядерные клетки.

Они образуют живые организмы, состоящие из одной или множества клеток. Структура, содержащая ядро, дала все многообразие жизни.

Строение прокариотической клетки

Бактерии имеют разную форму:

кокки – шаровидные клетки;

бациллы – вытянутые палочки;

В зависимости от того, к какой группе относятся бактерии, они могут существовать по отдельности, или образовывать скопления. Например, стрептококки образуют цепь из нескольких кокков. Стафилококки образуют скопление, которое напоминает гроздь винограда.

Характерная особенность прокариот – отсутствие оформленного ядра. Также отсутствуют мембранные органоиды.

Генетический материал находится в одной хромосоме. В её состав входит одна ДНК, которая не соединяется с белками. Кольцевая ДНК размещена прямо в цитоплазме.

Цитоплазма заполняет внутреннее пространство. Все немногочисленные органоиды находятся в ней.

Ферменты, обеспечивающие жизнедеятельность, распределены во внутреннем пространстве, или находятся на внутренней стенке мембраны.

Внутри клетки откладываются запасные вещества: жиры, полисахариды, полифосфаты. Они могут расходоваться клеткой по мере необходимости.

Снаружи бактерия покрыта цитоплазматической мембраной. Сверху расположена клеточная стенка, состоящая из муреина. Это смесь полисахаридов и белковых молекул. Клеточная стенка прикрыта слизистой капсулой.

Цитоплазматическая мембрана образует впячивания – мезосомы. Они выполняют функции недостающих органоидов.

Бактерия может иметь жгутики и пили – органоиды движения в жидкой среде.

Плюсы и минусы прокариот

Прокариоты играют и положительную и отрицательную роль. В качестве примера негативного влияния, можно отметить заболевания, возбудителем которых являются бактерии: туберкулёз, холера, тиф и другие.

Характеризуя положительное значение бактерий, можно отметить:

приготовление кисломолочной продукции с помощью бродильных прокариот;

бактерии-симбионты, обитающие в других организмах, приносящие пользу;

бактерии-разрушители органического опада и другие.

Строение эукариот

Эукариотическая клетка, образуя одноклеточный организм, существует самостоятельно. Также она может с другими клетками образовывать многоклеточные организмы.

В соответствии с организмом, образованным клеткой, существуют некоторые различия в её строении. Эти различия не так велики. Больше можно отметить черт сходства.

Эукариотическая клетка покрыта цитоплазматической мембраной. Она имеет многочисленные поры, образует складки, впячивания и выпячивания, что позволяет осуществлять поступление веществ с помощью пиноцитоза и фагоцитоза.

Пиноцитоз – это поступление капель жидкости. Фагоцитоз – это поступление твёрдых частичек через мембрану.

Растительная клетка имеет ещё прочную целлюлозную оболочку.

Ядерная клетка имеет множество мембранных органоидов:

Прежде всего, это оформленное ядро. Оно хранит и воспроизводит наследственную информацию. Также ядро регулирует жизнедеятельность клетки.

Внутреннее пространство заполнено цитоплазмой – это среда, в которой идут все реакции и процессы. По цитоплазме перемещаются органоиды и вещества.

Эндоплазматическая сеть. Она бывает шероховатой, на ней идёт биосинтез белка. Жиры и углеводы синтезируются на гладкой сети.

Аппарат Гольджи – это совокупность уплощённых полостей, мешочков, цистерн. В нём упаковываются и хранятся вещества, которые клетка синтезирует.

Цитоскелет – микротрубочки из белковых волокон. Они связаны с цитоплазматической мембраной, поддерживают определённую форму клетки.

Сходства и отличие прокариот и эукариот

Для прокариотов и эукариот характерны черты сходства и различия.

Их сравнение представлено в таблице.

Нет. Есть ДНК, расположенная в цитоплазме. Цитоплазма с ДНК носит название нуклеоид.

Присутствует оформленное ядро.

Наличие мембранных органоидов

Отсутствует митоз и мейоз. Клетка делится просто надвое.

Гетеротрофное (организмы не могут образовывать органические молекулы), автотрофное (организмы могут образовывать органические вещества).

Автотрофное (растения), гетеротрофное (животные).

Присутствуют, более крупные.

Есть только у растительной клетки.

Строение прокариотической и эукариотической клеток представлено в виде схем на рисунке. Подписи помогают иметь наглядное представление о разнице в строении клеток.

Заключение

Значение клеток ядерных и неядерных организмов очень велико. С одноклеточных организмов начиналась эволюция. В настоящее время прокариоты и эукариотические организмы образуют все многообразие органического мира. Живые организмы участвуют в биологическом круговороте веществ. Имеют большое значение в жизнедеятельности человека.

Источник

Эукариотическая клетка животная и растительная рисунок

Эукариотические клетки

В начале изучения цитологии должно быть ясно, что эукариотические клетки имеют более сложную структуру, чем прокариотические клетки. Органеллы позволяют одновременно выполнять в клетке различные функции. Прежде чем обсуждать функции органелл внутри эукариотической клетки, давайте сначала рассмотрим два важных компонента клетки: плазматическую мембрану и цитоплазму.

Рисунок 1: На этом рисунке показаны типичные животная и растительная клетки.

Плазматическая мембрана

Подобно прокариотам, эукариотические клетки имеют плазматическую мембрану (рис. 2), состоящую из фосфолипидного бислоя со встроенными белками, которые отделяют внутреннее содержимое клетки от окружающей среды.

Читайте также:  Что нового ты узнал о жизни животных их повадках

Рисунок 2. Плазматическая мембрана представляет собой фосфолипидный бислой с внедренными белками. Существуют и другие компоненты, такие как холестерин и углеводы, которые могут быть обнаружены в мембране в дополнение к фосфолипидам и белку.

Цитоплазма

Цитоплазма включает содержимое клетки между плазматической мембраной и ядерной оболочкой (структура будет обсуждена в ближайшее время). Она состоит из органелл, взвешенных в гелеобразном цитозоле, цитоскелете и различных химических веществах (рис. 1). Несмотря на то, что цитоплазма состоит на 70-80 процентов из воды, она имеет полутвердую консистенцию, которая обеспечивается белками внутри нее.

Цитоскелет

Рисунок 3. Микрофиламенты, промежуточные нити и микротрубочки составляют цитоскелет клетки.

Если бы вы удалили все органеллы из клетки, оставались бы только плазматическая мембрана и цитоплазма? Нет. Внутри цитоплазмы все еще будут ионы и органические молекулы, а также сеть белковых волокон, которая помогает поддерживать форму клетки, закрепляет определенные органеллы в определенных положениях, позволяет цитоплазме и везикулам перемещаться внутри клетки и дает возможность одноклеточным организмам передвигаться самостоятельно. В совокупности эта сеть белковых волокон известна как цитоскелет.

Внутри цитоскелета есть три типа волокон: микрофиламенты, также известные как актиновые филаменты, промежуточные филаменты и микротрубочки (рис. 3).

Микрофиламенты являются самыми тонкими из волокон цитоскелета и участвуют в перемещении клеточных компонентов, например, во время деления клеток. Они также поддерживают структуру микроворсинок, обширную складку плазматической мембраны, обнаруженную в клетках, предназначенных для абсорбции. Эти компоненты также распространены в мышечных клетках и отвечают за сокращение мышечных клеток.

Промежуточные филаменты имеют промежуточный диаметр и выполняют структурные функции, такие как поддержание формы клетки и закрепление органелл. Кератин, соединение, укрепляющее волосы и ногти, образует промежуточные волокна одного типа.

Микротрубочки направляют движение органелл и представляют собой структуры, которые притягивают хромосомы к своим полюсам во время деления клеток. Они также являются структурными компонентами жгутиков и ресничек. В ресничках и жгутиках микротрубочки организованы в виде круга из девяти двойных микротрубочек снаружи и двух микротрубочек в центре.

Центросома реплицируется до деления клетки, и центриоли играют роль в перемещении дублированных хромосом к противоположным концам делящейся клетки. Однако точная функция центриолей в делении клеток не ясна, поскольку клетки, у которых удалены центриоли, все еще могут делиться, а клетки растений, у которых отсутствуют центриоли, способны к делению клеток.

Жгутики и реснички

Жгутики представляют собой длинные, похожие на волосы структуры, которые отходят от плазматической мембраны и используются для перемещения всей клетки (например, сперматозоидов, эвглены). Если у клетки есть жгутик, то как правило их количество колеблется от одного до нескольких.

Однако, когда присутствуют реснички, их обычно много, и они проходят по всей поверхности плазматической мембраны. Это короткие, похожие на волосы структуры, которые используются для перемещения целых клеток (например, парамеций) или перемещения веществ по внешней поверхности клетки (например, реснички клеток, выстилающих фаллопиевы трубы, которые перемещают яйцеклетку к матке, или реснички, выстилающие клетки дыхательных путей, которые перемещают твердые частицы к горлу).

Эндомембранная система

Обычно ядро является наиболее заметной органеллой в клетке. Ядро содержит ДНК клетки в форме хроматина и направляет синтез рибосом и белков. Рассмотрим его подробнее (Рисунок 4).

Ядерная оболочка представляет собой структуру с двойной мембраной, которая составляет самую внешнюю часть ядра. И внутренняя, и внешняя мембраны ядерной оболочки представляют собой бислои фосфолипидов.

Ядерная оболочка перемежается порами, которые контролируют прохождение ионов, молекул и РНК между нуклеоплазмой и цитоплазмой.

Хромосомы эукариот представляют собой линейные структуры, у каждого вида есть определенное количество хромосом в ядрах клеток его тела. Например, у человека число хромосом составляет 46, тогда как у дрозофилы число хромосом равно 8.

Хромосомы видны и отличимы друг от друга только тогда, когда клетка готовится к делению. Когда клетка находится в фазах роста и поддержания своего жизненного цикла, хромосомы напоминают размотанный беспорядочный пучок нитей, который и является хроматином.

Эндоплазматический ретикулум

Эндоплазматический ретикулум (ЭР) (рис. 5) представляет собой серию взаимосвязанных мембранных канальцев, которые совместно модифицируют белки и синтезируют липиды. Однако эти две функции выполняются в отдельных областях эндоплазматической сети: шероховатом эндоплазматическом ретикулуме и гладком эндоплазматическом ретикулуме соответственно.

Полая часть канальцев ЭР называется просветом или цистернальным пространством. Мембрана ЭР, представляющая собой бислой фосфолипидов, залитый белками, непрерывна с ядерной оболочкой.

Шероховатый эндоплазматический ретикулум (ШЭР) назван так потому, что рибосомы, прикрепленные к его цитоплазматической поверхности, придают ему вид шипов при просмотре в электронный микроскоп.

Рибосомы синтезируют белки, будучи прикрепленными к ЭР, что приводит к переносу их вновь синтезированных белков в просвет ШЭР, где они претерпевают модификации, такие как сворачивание или добавление сахаров. ШЭР также производит фосфолипиды для клеточных мембран.

Если фосфолипидам или модифицированным белкам не суждено оставаться в ЭР, они будут упакованы в пузырьки и транспортироваться из ШЭР путем отпочкования от мембраны (Рисунок 4). Поскольку шероховатый ЭР участвует в модификации белков, которые будут секретироваться из клетки, его много в клетках, секретирующих белки, таких как печень.

Гладкий эндоплазматический ретикулум (ГЭР) является продолжением ШЭР, но на ее цитоплазматической поверхности мало рибосом или они отсутствуют вовсе (см. Рисунок 4). Функции гладкого ЭР включают синтез углеводов, липидов (включая фосфолипиды) и стероидных гормонов, детоксикация лекарств и ядов, метаболизм алкоголя, и хранение ионов кальция.

Аппарат Гольджи

Рисунок 5. Аппарат Гольджи в этой просвечивающей электронной микрофотографии белой клетки крови виден как стопка полукруглых уплощенных колец в нижней части этого изображения. Рядом с аппаратом Гольджи можно увидеть несколько везикул.

Мы уже упоминали, что пузырьки могут отпочковываться из ЭР, но куда они деваются? Перед достижением конечного пункта назначения липиды или белки в транспортных пузырьках необходимо отсортировать, упаковать и пометить, чтобы они оказались в нужном месте.

Сортировка, маркировка, упаковка и распределение липидов и белков происходит в аппарате Гольджи (также называемом тельцом Гольджи), в серии уплощенных мембранных мешочков (рис. 5).

Аппарат Гольджи имеет принимающую поверхность (cis) рядом с эндоплазматическим ретикулумом и высвобождающую (trans) поверхность на стороне от ЭР, к клеточной мембране. Транспортные пузырьки, которые образуются из ЭР, перемещаются к принимающей стороне, сливаются с ней и выделяют свое содержимое в просвет аппарата Гольджи.

Количество Гольджи в различных типах клеток снова показывает, что форма следует за функцией внутри клеток. Клетки, которые участвуют в большой секреторной деятельности (например, клетки слюнных желез, которые секретируют пищеварительные ферменты, или клетки иммунной системы, которые секретируют антитела), имеют большое количество аппаратов Гольджи.

В растительных клетках Гольджи играет дополнительную роль в синтезе полисахаридов, некоторые из которых включены в клеточную стенку, а некоторые используются в других частях клетки.

Лизосомы

В клетках животных лизосомы представляют собой «мусоропровод». Пищеварительные ферменты в лизосомах помогают расщеплению белков, полисахаридов, липидов, нуклеиновых кислот и даже изношенных органелл. У одноклеточных эукариот лизосомы важны для переваривания пищи, которую они глотают, и для повторного использования органелл. Эти ферменты активны при гораздо более низком pH (более кислом), чем ферменты, расположенные в цитоплазме. Многие реакции, протекающие в цитоплазме, не могут происходить при низком pH, поэтому преимущество разделения эукариотической клетки на органеллы очевидно.

Рисунок 6. Макрофаг фагоцитировал потенциально патогенную бактерию в везикулу, которая затем срастается с лизосомой внутри клетки, так что патоген может быть разрушен.

Везикулы и вакуоли

Рисунок 7. Эндомембранная система работает над модификацией, упаковкой и переносом липидов и белков.

Рибосомы

Рисунок 8. Рибосомы состоят из большой субъединицы и малой субъединицы. Во время синтеза белка рибосомы собирают аминокислоты в белки.

Рибосомы могут быть прикреплены либо к цитоплазматической стороне плазматической мембраны, либо к цитоплазматической стороне эндоплазматического ретикулума (рис. 8). Электронная микроскопия показала, что рибосомы состоят из больших и малых субъединиц.

Поскольку синтез белка важен для всех клеток, рибосомы находятся практически в каждой клетке, хотя в прокариотических клетках они меньше. Их особенно много в незрелых эритроцитах для синтеза гемоглобина, который участвует в транспортировке кислорода по всему телу.

Митохондрии

Рисунок 9. Эта просвечивающая электронная микрофотография показывает митохондрию, если смотреть с помощью электронного микроскопа.

Митохондрии часто называют «электростанциями» или «энергетическими фабриками» клетки, потому что они отвечают за выработку аденозинтрифосфата (АТФ), основной молекулы, несущей энергию клетки.

Читайте также:  Цепи питания животных тундры 4 класс окружающий мир

Внутренний слой имеет складки, называемые кристами, которые увеличивают площадь поверхности внутренней мембраны.

Область, окруженная складками, называется митохондриальным матриксом. Кристы и матрикс играют разные роли в клеточном дыхании.

В соответствии с нашей темой следования форме за функцией важно отметить, что мышечные клетки имеют очень высокую концентрацию митохондрий, потому что мышечным клеткам требуется много энергии для сокращения.

Пероксисомы

Алкоголь детоксицируется пероксисомами в клетках печени. Побочным продуктом этих реакций окисления является перекись водорода H2O2, которая содержится в пероксисомах, чтобы предотвратить повреждение химическим веществом клеточных компонентов за пределами органелл. Перекись водорода безопасно расщепляется пероксисомальными ферментами на воду и кислород.

Клетки животных против клеток растений

Несмотря на их фундаментальное сходство, между животными и растительными клетками есть поразительные различия (см. Таблицу).

Клеточная стенка

На рисунке 1, схеме растительной клетки, вы видите структуру вне плазматической мембраны, называемую клеточной стенкой. Стенка клетки представляет собой жесткое покрытие, которое защищает клетку, обеспечивает структурную поддержку и придает форму клетке. Клетки грибов и протистов также имеют клеточные стенки.

В то время как основным компонентом стенок прокариотических клеток является пептидогликан, основной органической молекулой в стенке растительной клетки является целлюлоза (рис. 10), полисахарид, состоящий из длинных прямых цепей единиц глюкозы. Когда информация о питании касается пищевых волокон, это относится к содержанию целлюлозы в пище.

Рисунок 10. Целлюлоза представляет собой длинную цепь молекул β-глюкозы, связанных 1-4 связью. Пунктирные линии на каждом конце фигуры указывают на ряд большего количества единиц глюкозы.

Хлоропласты

Подобно митохондриям, хлоропласты также имеют собственную ДНК и рибосомы. Хлоропласты участвуют в фотосинтезе и могут быть обнаружены в эукариотических клетках, таких как растения и водоросли. При фотосинтезе углекислый газ, вода и световая энергия используются для производства глюкозы и кислорода. В этом основное различие между растениями и животными: растения (автотрофы) способны производить себе пищу, например глюкозу, тогда как животные (гетеротрофы) должны полагаться на другие организмы в качестве органических соединений или источника пищи.

Рисунок 11. Эта упрощенная диаграмма хлоропласта показывает внешнюю мембрану, внутреннюю мембрану, тилакоиды, грану и строму.

Подобно митохондриям, хлоропласты имеют внешнюю и внутреннюю мембраны, но внутри пространства, ограниченного внутренней мембраной хлоропласта, находится набор взаимосвязанных и уложенных друг на друга, заполненных жидкостью мембранных мешочков, называемых тилакоидами (рис. 11). Каждый стек тилакоидов называется грана. Жидкость, заключенная во внутренней мембране и окружающая грану, называется строма.

Хлоропласты содержат зеленый пигмент, называемый хлорофиллом, который улавливает энергию солнечного света для фотосинтеза. Как и в клетках растений, у фотосинтезирующих протистов есть хлоропласты. Некоторые бактерии также осуществляют фотосинтез, но у них нет хлоропластов. Их фотосинтетические пигменты расположены в тилакоидной мембране внутри самой клетки.

Эволюция в действии

Центральная вакуоль

Ранее мы упоминали вакуоли как важные компоненты растительных клеток. Если вы посмотрите на рисунок 1, вы увидите, что каждая растительная клетка имеет большую центральную вакуоль, занимающую большую часть клетки. Центральная вакуоль играет ключевую роль в регулировании концентрации воды в клетках при изменении условий окружающей среды.

В клетках растений жидкость внутри центральной вакуоли обеспечивает тургорное давление, которое представляет собой внешнее давление, создаваемое жидкостью внутри клетки. Вы когда-нибудь замечали, что если вы забудете полить растение на несколько дней, оно увянет? Это связано с тем, что, когда концентрация воды в почве становится ниже, чем концентрация воды в растении, вода перемещается из центральных вакуолей и цитоплазмы в почву.

По мере того как центральная вакуоль сжимается, она оставляет клеточную стенку без поддержки. Эта потеря поддержки клеточных стенок растения приводит к его увяданию. Кроме того, эта жидкость может сдерживать травоядность, поскольку горький вкус содержащихся в ней отходов препятствует употреблению насекомыми и животными. Центральная вакуоль также служит для хранения белков в развивающихся семенных клетках.

Внеклеточный матрикс животных клеток

Рисунок 12. Внеклеточный матрикс состоит из сети веществ, секретируемых клетками.

Большинство клеток животных выделяют материалы во внеклеточное пространство. Основными компонентами этих материалов являются гликопротеины и белковый коллаген. В совокупности эти материалы называются внеклеточным матриксом (рис. 12).

Мало того, что внеклеточный матрикс удерживает клетки вместе, образуя ткань, он также позволяет клеткам внутри ткани связываться друг с другом.

Свертывание крови является примером роли внеклеточного матрикса в клеточной коммуникации. Когда клетки, выстилающие кровеносный сосуд, повреждены, в них появляется белковый рецептор, называемый тканевым фактором.

Когда тканевой фактор связывается с другим фактором внеклеточного матрикса, он заставляет тромбоциты прилипать к стенке поврежденного кровеносного сосуда, стимулирует соседние гладкомышечные клетки кровеносного сосуда к сокращению (тем самым сужая кровеносный сосуд) и инициирует серию шагов, которые стимулируют тромбоциты производить факторы свертывания крови.

Межклеточные соединения

Клетки также могут общаться друг с другом посредством прямого контакта, называемого межклеточными соединениями. Есть некоторые различия в способах, которыми это делают клетки растений и животных. Плазмодесмы представляют собой соединения между растительными клетками, тогда как контакты животных клеток включают плотные и щелевые соединения, а также десмосомы.

Также только в клетках животных обнаруживаются десмосомы, которые действуют как точечные сварные швы между соседними эпителиальными клетками (рис. 13в). Они удерживают клетки вместе в виде листов в растягивающихся органах и тканях, таких как кожа, сердце и мышцы.

Щелевые соединения в клетках животных похожи на плазмодесмы в клетках растений в том смысле, что они представляют собой каналы между соседними клетками, которые обеспечивают транспорт ионов, питательных веществ и других веществ, которые позволяют клеткам общаться (рис. 13г). Однако структурно щелевые контакты и плазмодесмы различаются.

Рисунок 13. Существует четыре типа соединений между ячейками. (а) Плазмодезма представляет собой канал между клеточными стенками двух соседних растительных клеток. (б) Плотные соединения соединяются с соседними клетками животных. (в) Десмосомы соединяют две клетки животных вместе. (г) Щелевые соединения действуют как каналы между клетками животных.

Таблица 1

Клеточный компонент Функция Присутствует у
Прокариот?
Присутствует у
Животных?
Присутствует у
Растений?
Плазматическая мембрана Отделяет клетку от внешней среды; контролирует прохождение органических молекул, ионов, воды, кислорода и отходов в клетку и из нее Да Да Да
Цитоплазма Обеспечивает структуру ячейки; место многих метаболических реакций; среда, в которой обнаружены органеллы Да Да Да
Нуклеоид Местоположение ДНК Да Нет Нет
Ядро Клеточная органелла, которая содержит ДНК и направляет синтез рибосом и белков Нет Да Да
Рибосома Синтез белка Да Да Да
Митохондрии Продукция АТФ / клеточное дыхание Нет Да Да
Пероксисомы Окисляет и расщепляет жирные кислоты и аминокислоты, а также нейтрализует яды Нет Да Да
Пузырьки и вакуоли хранение и транспортировка; пищеварительная функция в клетках растений Нет Да Да
Центросома Неопределенная роль в делении клеток в клетках животных; источник микротрубочек в клетках животных Нет Да Нет
Лизосомы переваривание макромолекул; рециркуляция изношенных органелл Нет Да Нет
Клеточная стенка Защита, структурная поддержка и поддержание формы клетки Да, в первую очередь пептидогликан у бактерий, но не архей Нет Да
Хлоропласт Фотосинтез Нет Нет Да
Эндоплазматический ретикулум Модифицирует белки и синтезирует липиды Нет Да Да
Аппарат Гольджи Изменяет, сортирует, маркирует, упаковывает и распространяет липиды и белки Нет Да Да
Цитоскелет Поддерживает форму клетки, закрепляет органеллы в определенных положениях, позволяет цитоплазме и везикулам перемещаться внутри клетки и позволяет одноклеточным организмам двигаться независимо Да Да Да
Жгутик Передвижение клетки Несколько Несколько Нет, за исключением некоторых сперматозоидов растений.
Реснички Передвижение клеток, перемещение частиц вдоль внеклеточной поверхности плазматической мембраны и фильтрация Нет Несколько Нет

Резюме

Растительные клетки имеют клеточную стенку, хлоропласты и центральную вакуоль. Стенка растительной клетки, основным компонентом которой является целлюлоза, защищает клетку, обеспечивает структурную поддержку и придает клетке форму. Фотосинтез происходит в хлоропластах. Центральная вакуоль расширяется, увеличивая клетку без необходимости производить больше цитоплазмы.

Эндомембранная система включает ядерную оболочку, эндоплазматический ретикулум, аппарат Гольджи, лизосомы, везикулы, а также плазматическую мембрану. Эти клеточные компоненты работают вместе, чтобы модифицировать, упаковывать, маркировать и транспортировать мембранные липиды и белки.

Цитоскелет состоит из трех разных типов белковых элементов. Микрофиламенты придают клетке жесткость и форму, а также облегчают клеточные движения. Промежуточные нити несут напряжение и закрепляют на месте ядро и другие органеллы. Микротрубочки помогают клетке противостоять сжатию, служат дорожками для моторных белков, которые перемещают везикулы через клетку и тянут реплицированные хромосомы к противоположным концам делящейся клетки. Они также являются структурными элементами центриолей, жгутиков и ресничек.

Клетки животных общаются через свои внеклеточные матрицы и связаны друг с другом плотными контактами, десмосомами и щелевыми контактами. Клетки растений связаны и общаются друг с другом с помощью плазмодесм.

Источник

Познавательное и интересное