Правило буравчика простым языком
Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.
Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.
Определение
В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.
Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)
Рис. 1. Правило буравчика для прямого проводника
На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.
Главное правило
Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.
Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.
Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).
Главное правило позволяет определить направление в пространстве аксиальных векторов, важных для вычислений:
Хотя ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь принятого алгоритма выбора, легче производить вычисления, без риска перепутать знаки.
Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.
Правило правой руки
В электротехнике очень часто применяют интерпретацию буравчика для правой руки.
Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий. (см. схему на рис. 2).
Рис. 2. Иллюстрация правила правой руки
Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.
При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке 3 изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.
Рис. 3. Иллюстрация правила правой руки для катушки
Не трудно догадаться, что данные правила можно применять с целью определения направления тока. Например, если с помощью магнитной стрелки определить устремление линий магнитной индукции, то путём применения правила буравчика (как вариант его формулировки для правой руки), легко определяется, в какую сторону течёт ток.
Специальные правила
Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.
Для векторного произведения
Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:
Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.
По циферблату часов
При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.
Правила правой руки, для произведения векторов
Существует два варианта правила.
Первый вариант:
Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.
Второй вариант:
Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.
Для базисов
Перечисленные выше правила применяются также для базисов.
Например, правило буравчика для правого базиса можно записать так:
При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.
Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:
Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.
Правило левой руки
В электротехнике довольно часто возникают вопросы, связанные с определением силы Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник, по которому протекает электроток.
Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.
Рис. 4. Сила Ампера
Интерпретация для точечного заряда
Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.
Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.
Рис. 5. Интерпретация правил левой руки
Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.
Полезные сведения и советы
Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.
Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.
Видео по теме
§ 45. Обнаружение магнитного поля по его действию на электрический ток. Правило левой руки. —
В физике часто используют правила:
Это, так называемые, мнемонические правила. Мнемоническими называют специальные приемы и способы, которые упрощают процесс запоминания необходимой информации, позволяя образовывать ассоциации, проводя параллели между абстрактными объектами (фактами) и объектами, имеющими визуальные, аудиальные или кинетические представления.
Одним из первых в физике мнемоническое правило предложил П. Буравчик. Его правило дает возможность найти направление вектора, получающегося в результате векторного произведения.
Формулировка правила буравчика
Пётр Буравчик – это первый физик, сформулировавший правило левой руки для различных частиц и полей. Оно применимо как в электротехнике (помогает определить направление магнитных полей), так и в иных областях. Оно поможет, к примеру, определить угловую скорость.
Простое и понятное объяснение с наглядным примером
Правило буравчика (правило правой руки) – это название не связано с фамилией физика, сформулировавшего его. Больше название опирается на инструмент, имеющий определённое направление шнека. Обычно у буравчика (винта, штопора) т.н. резьба правая, входит в грунт бур по часовой стрелке. Рассмотрим применение этого утверждения для определения магнитного поля.
Главное – не забыть, в каком направлении течёт ток
Нужно сжать правую руку в кулак, подняв вверх большой палец. Теперь немного разжимаем остальные четыре. Именно они указывают нам направление магнитного поля. Если же говорить кратко, правило буравчика имеет следующий смысл – вкручивая буравчик вдоль направления тока, увидим, что рукоять вращается по направлению линии вектора магнитной индукции.
Как связано магнитное поле с буравчиком и руками
В задачах по физике, при изучении электрических величин, часто сталкиваются с необходимостью нахождения направления тока, по вектору магнитной индукции и наоборот. Также эти навыки потребуются и при решении сложных задач и расчетов, связанных магнитным полем систем.
Прежде чем приступить к рассмотрению правил, хочу напомнить, что ток протекает от точки с большим потенциалом к точке с меньшим. Можно сказать проще — ток протекает от плюса к минусу.
Правило правой и левой руки: применение на практике
Рассматривая применение этого закона, начнём с правила правой руки. Если известно направление вектора магнитного поля, при помощи буравчика можно обойтись без знания закона электромагнитной индукции. Представим, что винт передвигается вдоль магнитного поля. Тогда направление течения тока будет «по резьбе», то есть вправо.
Ещё одно чёткое и понятное объяснение
Применение правила правой руки для соленоида
Обратим внимание на постоянный управляемый магнит, аналогом которого является соленоид. По своей сути он является катушкой с двумя контактами. Известно, что ток движется от «+» к «-». Опираясь на эту информацию, берём в правую руку соленоид в таком положении, чтобы 4 пальца указывали направление течения тока. Тогда вытянутый большой палец укажет вектор магнитного поля.
Применение правила правой руки для соленоида
Выводы
Освоить эти способы определения направления сил и полей очень просто. Такие мнемонические правила в электричестве значительно облегчают задачи школьникам и студентам. С буравчиком разберется даже полный чайник, если он хотя бы раз открывал вино штопором. Главное не забыть, куда течет ток. Повторюсь, что использование буравчика и правой руки чаще всего с успехом применяются в электротехнике.
Напоследок рекомендуем просмотреть видео, благодаря которому вы на примере сможете понять, что такое правило буравчика и как его применять на практике:
Правило левой руки: что можно определить, воспользовавшись им
Не стоит путать правила левой руки и буравчика – они предназначены для совершенно разных целей. При помощи левой руки можно определить две силы, вернее, их направление. Это:
Попробуем разобраться, как это работает.
Применение для силы Ампера
Правило левой руки для силы Ампера: в чём оно заключается
Расположим левую руку вдоль проводника так, чтобы пальцы были направлены в сторону протекания тока. Большой палец будет указывать в сторону вектора силы Ампера, а в направлении руки, между большим и указательным пальцем будет направлен вектор магнитного поля. Это и будет правило левой руки для силы ампера, формула которой выглядит так:
Правило левой руки для силы Лоренца: отличия от предыдущего
Располагаем три пальца левой руки (большой, указательный и средний) так, чтобы они находились под прямым углом друг к другу. Большой палец, направленный в этом случае в сторону, укажет направление силы Лоренца, указательный (направлен вниз) – направление магнитного поля (от северного полюса к южному), а средний, расположенный перпендикулярно в сторону от большого, – направление тока в проводнике.
Применение для силы Лоренца
Формулу расчёта силы Лоренца можно увидеть на рисунке ниже.
Общее (главное) правило
Главное правило, которое может использоваться и в варианте правила буравчика (винта) и в варианте правила правой руки — это правило выбора направления для базисов и векторного произведения (или даже для чего-то одного из двух, т. к. одно прямо определяется через другое). Главным оно является потому, что в принципе его достаточно для использования во всех случаях вместо всех остальных правил, если только знать порядок сомножителей в соответствующих формулах.
Выбор правила для определения положительного направления векторного произведения и для положительного базиса
(системы координат) в трехмерном пространстве — тесно взаимосвязаны.
Левая (на рисунке слева) и правая (справа) декартовы системы координат (левый и правый базисы). Принято считать положительным и использовать по умолчанию правый (это общепринятое соглашение; но, если особые причины заставляют отойти от данного соглашения — это должно оговариваться явно)
Оба эти правила в принципе чисто условны[4], однако принято (по крайней мере, если обратное явно не оговорено) считать, и это общепринятое соглашение, что положительным является правый базис
По умолчанию же общепринято использовать положительные (и таким образом правые) базисы. Левые базисы в принципе принято использовать в основном когда использовать правый очень неудобно или вообще невозможно (например, если у нас правый базис отражается в зеркале, то отражение представляет собой левый базис, и с этим ничего не поделаешь).
Поэтому правило для векторного произведения и правило для выбора (построения) положительного базиса взаимно согласованы.
Они могут быть сформулированы так:
Для векторного произведения
Правило буравчика (винта) для векторного произведения
:
Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, то буравчик (винт), вращающийся таким же образом, будет завинчиваться в направлении вектора-произведения.
Вариант правило буравчика (винта) для векторного произведения через часовую стрелку
:
Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю и смотреть с той стороны, чтобы это вращение было для нас по часовой стрелке, вектор-произведение будет направлен от нас (завинчиваться вглубь часов).
Правило правой руки для векторного произведения (первый вариант)
Если нарисовать векторы так, чтобы их начала совпадали и вращать первый вектор-сомножитель кратчайшим образом ко второму вектору-сомножителю, а четыре пальца правой руки показывали направление вращения (как бы охватывая вращающийся цилиндр), то оттопыренный большой палец покажет направление вектора-произведения.
Правило правой руки для векторного произведения (второй вариант)
a → × b → = c → <\displaystyle <\vec >\times <\vec >=<\vec
Если нарисовать векторы так, чтобы их начала совпадали и первый (большой) палец правой руки направить вдоль первого вектора-сомножителя, второй (указательный) — вдоль второго вектора-сомножителя, то третий (средний) покажет (приблизительно) направление вектора-произведения
Для базисов
Все эти правила могут быть, конечно, переписаны для определения ориентации базисов. Перепишем только два из них: Правило правой руки для базиса
) первый (большой) палец правой руки направить вдоль первого базисного вектора (то есть по оси
x
), второй (указательный) — вдоль второго (то есть по оси
y
), а третий (средний) окажется направленным (приблизительно) в направлении третьего (по
z
), то это правый базис
(как и оказалось на рисунке).
Правило буравчика (винта) для базиса
:
Если вращать буравчик и векторы так, чтобы первый базисный вектор кратчайшим образом стремился ко второму, то буравчик (винт) будет завинчиваться в направлении третьего базисного вектора, если это правый базис.
Примечания
Понятие вектора
Полагаем, нет смысла истолковывать правило буравчика при отсутствии знания определения вектора. Требуется открыть бутылку – знание о правильных действиях поможет. Вектором называют математическую абстракцию, не существующую реально, выказывающую указанные признаки:
Не всегда затрагивают силу. Векторами описывается поле. Простейший пример показывают школьникам преподаватели физики. Подразумеваем линии напряженности магнитного поля. Вдоль обычно рисуются векторы по касательной. В иллюстрациях действия на проводник с током увидите прямые линии.
Векторные величины часто лишены места приложения, центры действия выбираются по договоренности. Момент силы исходит из оси плеча. Требуется для упрощения сложения. Допустим, на рычаги различной длины действуют неодинаковые силы, приложенные к плечам с общей осью. Простым сложением, вычитанием моментов найдем результат.
Векторы помогают решить многие обыденные задачи и, хотя выступают математическими абстракциями, действуют реально. На основе ряда закономерностей возможно вести предсказание будущего поведения объекта наравне со скалярными величинами: поголовье популяции, температура окружающей среды. Экологов интересуют направления, скорость перелета птиц. Перемещение является векторной величиной.
Правило буравчика помогает найти векторное произведение векторов. Это не тавтология. Просто результатом действия окажется тоже вектор. Правило буравчика описывает направление, куда станет указывать стрелка. Что касается модуля, нужно применять формулы. Правило буравчика – упрощенная чисто качественная абстракция сложной математической операции.