Рассказ о приборе барометр анероид по плану

Сказки

Барометр-анероид

Про массу или длину говорят, что они большие или маленькие, увеличиваются или уменьшаются. Про атмосферное давление говорят: оно высокое или низкое, повышается или понижается. Такая традиция установилась ещё с тех пор, когда атмосферное давление измеряли барометрами Торричелли, наблюдая за поднятием или опусканием ртутного столба. Сегодня чаще применяют безжидкостные барометры, так называемые анероиды (греч. «а» – отрицание, «нерос» – влажный).

Главная часть барометра-анероида – лёгкая, упругая, полая внутри металлическая коробочка 2 с гофрированной (волнистой) поверхностью. Воздух из коробочки откачан. Её стенки растягивает пружинящая металлическая пластина 5. К ней при помощи специального механизма прикреплена стрелка 6, которая насажена на ось 7 (см. рисунок ниже). Конец стрелки передвигается по шкале 4, размеченной в мм рт. ст. Все детали барометра помещены внутрь корпуса 1, закрытого спереди стеклом 3.

Согласно формуле F=pS, изменение атмосферного давления (то есть величины «p») будет приводить к изменению силы, сдавливающей стенки коробочки. Следовательно, будет изменяться и величина их прогиба. Возникающее движение стенок коробочки при помощи механизма передастся стрелке и вызовет её сдвиг к другому делению шкалы.

На рисунке – упрощённая схема соединения коробочки со стрелкой. В действительности этот механизм гораздо сложнее. В нём есть даже нить, наматывающаяся на колесо с жёлобом, прикреплённое к стрелке.

Барометр-анероид – очень чувствительный прибор. Например, с его помощью можно заметить изменение атмосферного давления даже при подъёме на лифте жилого дома. Наблюдая за барометром, вы легко обнаружите, что его показания меняются при перемене погоды. Замечено, что перед ненастьем атмосферное давление падает, а перед ясной погодой – возрастает. Кроме того, показания барометра зависят от высоты места наблюдения над уровнем моря. Чем выше мы будем подниматься, тем меньшим будет атмосферное давление. При небольших высотах подъёма каждые 12 м атмосферное давление уменьшается на 1 мм рт. ст.

Как барометр-анероид, так и трубку Торричелли можно использовать не только как барометр, но и как вакуумметр. Так называется прибор, измеряющий давления газа, меньшие атмосферного.

На рисунке изогнутая трубка Торричелли помещена на тарелку воздушного насоса. Поскольку высота трубки гораздо меньше 76 см, то при атмосферном давлении ртуть заполняет трубку целиком (рис. «а»). Накрыв трубку колоколом и откачивая воздух насосом, мы будем понижать давление. Через некоторое время уровень ртути начнёт понижаться, показывая, что под колоколом постепенно создаётся вакуум (рис. «б»).

Источник

Барометр-анероид. Атмосферное давление на различных высотах

Урок 28. Физика 7 класс ФГОС

Конспект урока «Барометр-анероид. Атмосферное давление на различных высотах»

Барометр-анероид. Атмосферное давление на различных высотах

Сей особенный предмет

Вам подскажет вмиг ответ:

Брать свой зонтик или нет.

В данной теме познакомимся с устройствами, использующимися для измерения атмосферного давления — барометрами. А также выясним как зависит атмосферное давление с увеличением высоты.

В прошлой теме было установлено, что атмосфера нашей планеты оказывает давление на все тела, расположенные на Земле. Узнали, что за нормальное атмосферное давление принято давление столба ртути высотой 760 мм при температуре воздуха 20ºС. Такое давление часто называют одной нормальной, или физической атмосферой. Давление, создаваемое 1 мм рт.ст., приблизительно составляет 133,3 Па, что позволяет переводить давление, выраженное в мм рт. ст., в метрическую систему.

Каждый день, просматривая прогноз погоды, люди получают информацию о величине атмосферного давления и его изменении. Почему оно не является постоянным? Почему на разных территориях Земли оно разное? И как зависит давление от высоты?

Атмосферное давление зависит от состава воздуха. Например, при поступлении влажного воздуха, насыщенного водяными парами, давление уменьшается, так как масса молекул воды заметно меньше массы «основных» молекул атмосферы — азота и кислорода. Соответственно, если приходят более сухие массы воздуха, давление повышается. Первым, кто использовал данную особенность атмосферного давления для определения погоды, был небезызвестный Эванджелиста Торричелли. Однажды, повторяя свой опыт с трубкой, он заметил, что уровень ртути в ней заметно упал. Торричелли пытался подлить ртуть в трубку, менял чашки с ртутью, но результат не менялся. И тут ученый заметил, что в комнате стало душно и нечем дышать. Подойдя к окну, чтобы его открыть, ученый увидел, что на улице стоит пасмурная погода. Проходит день другой и погода на улице вновь становится сухой и ясной. И ртуть в трубке снова на своем привычном уровне. Значит, делает вывод Торричелли, его прибор может отмечать изменение давления воздуха и показывать изменяющуюся тяжесть.

Так как слово «тяжесть» звучит по-гречески звучит как «барос», то свой прибор Торричелли стал называть барометром.

Бургомистр города Магдебурга Отто фон Герике в своем доме с первого до второго этажа поставил стеклянную трубку, в которой была налита вода. А на ее поверхности плавала пробка с укрепленным в ней человечком, вытянутая рука которого указывала на шкалу.

Бургомистр уверял жителей своего города, что этот человечек способен предсказывать погоду, ссылаясь на опыты Торричелли. Естественно многие жители ему не верили и называли чудаком. Но в воскресенье, 9 декабря 1660 года человечек в трубке вдруг опустился как никогда низко. Фон Герике приказывает сообщить горожанам о надвигающейся буре. Многие горожане отнеслись скептически к словам своего бургомистра. Но наиболее осторожные следуют его примеру и закрывают ставни и крепят крыши. И верно, через несколько часов небо потемнело, и на город обрушился ураган, которого не помнили даже старожилы.

Читайте также:  Сказки крупными буквами для детей

И вот уже более трех веков барометр исправно служит людям, хотя за это время он во многом изменился — стал автоматическим и самозаписывающим; научился управлять другими механизмами и поддерживать заданное давление в различных устройствах.

В настоящее время ртутные барометры не находят широкого применения, хотя и обладают высокой точностью. Пары ртути вредны для организма человека. Поэтому на практике в основном пользуются металлическим барометроманероидом, что в переводе с греческого означает «безжидкостный».

Внешний вид и внутреннее устройство барометра-анероида представлен на рисунке. Главной частью анероида является маленькая металлическая коробочка с волнистой (гофрированной) верхней и нижней поверхностями. Воздух из этой коробочки частично выкачан. При увеличении атмосферного давления увеличивается сила давления на коробочку. Коробочка сжимается и растягивает пружину, прикрепленную к ней. Пружина связана со стрелкой, которая перемещается по шкале в сторону больших значений давлений. Если же давление понижается, то сила давления на коробочку уменьшается, и силы упругости распрямляют ее. При этом стрелке перемешается в противоположную сторону. Шкалу анероида предварительно градуируют, т.е. наносят деления по показаниям ртутного барометра. Поэтому значения давления на шкале и в мм рт.ст. и в гектопаскалях (гПа).

Таким образом, атмосферное давление зависит от метеорологических условий. Но только ли от них?

Наиболее сжатыми, а значит, более плотными, являются прилегающие к поверхности Земли слои атмосферы. Следовательно, значение атмосферного давления будет зависеть и от высоты места над уровнем моря. Так, например, на вершине самой высокой горы Эверест давление почти в три раза меньше, чем у ее подножия.

Для расчета гидростатического давления использовалась формула, связывающая плотность жидкости и высоту ее столба, так как вследствие малой сжимаемости плотность жидкости на различных глубинах практически одинакова. Зависимость же атмосферного давления от высоты описывается гораздо более сложной формулой, так как плотность атмосферы сильно зависит от высоты над поверхностью Земли, вследствие большой сжимаемости газов. Однако для расчетов, не требующих большой точности и при не очень больших высотах, можно считать, что давление убывает на 1 мм рт. ст. при подъеме на каждые 12 м. Эту зависимость давления от высоты можно использовать для измерения высоты подъема альпинистов, летательных аппаратов и т.п.

Если при подъеме давление уменьшилось на 20 мм рт.ст., то это значит, что высота подъема составила 240 метров.

h = 20 мм рт. ст. × 12 м/(мм рт. ст.) = 240 м

Приборы, измеряющие высоту по такому принципу, называются альтиметрами (от латинского «альтиус» — высоко).

Задача 1. Определите высоту горы, если у ее подножия барометр показывает давление 750 мм рт. ст., а на ее вершине — 620 мм рт. ст.

Барометр — прибор, используемый для измерения атмосферного давления.

Атмосферное давление зависит от высоты местности и метеоусловий.

– При небольших подъемах в среднем на каждые 12 м высоты подъема, давление уменьшается на 1 мм рт. ст.

Источник

Барометр-Анероид. Характеристики. Виды.

Барометр – это измерительный прибор, который предназначается для определения давления атмосферного воздуха. Помимо метеорологического применения, барометр используется для экологического контроля (например, для аттестации рабочих мест) или в авиации (для определения высоты полета над уровнем моря).

Рисунок 1. Барометр-анероид

Впервые, барометр был изобретён и описан в сочинении «Opera geometrica» в 1644 году ученым из Флоренции (Италия) Эванджелиста Торричелли. Это был жидкостный ртутный барометр, давление по которому измерялось по высоте ртутного (жидкостного) столба в трубке, запаянной сверху, а нижним концом помещенной в сосуд с ртутью (жидкостью). В день, когда Торричели проводил опыт со своим ртутным барометром, выдалась тихая солнечная погода, а столбик ртути остановился на отметке 760 мм. С тех пор, давление в 760 мм ртутного столба является нормальным. Ртутные и жидкостные барометры являются наиболее точными и до сих пор используются на метеорологических станциях. Их недостатком является хрупкость, небезопасность и большие размеры.

В 1844 г. французский инженер Люсьен Види, используя исследования немецкого математика и физика XVII в. Готфрида Вильгельма Лейбница, сконструировал принципиально новый, безжидкостный барометр, который был назван барометром-анероидом(от греч. «анерос» – не содержащий влаги). Барометры, построенные на основе барометра Л. Види, на данный момент, являются самими распространенными.

Вообще, барометры, в зависимости от принципа действия могут быть ртутными, жидкостными, анероидными или электронными.

Жидкостный барометр – прибор, в котором используется принцип уравновешивания веса столба жидкости давлением атмосферы.

Ртутный барометр – атмосферное давление, в котором, можно замерить по высоте ртутного столба на прикрепленной рядом шкале.

Барометр-анероид – прибор, принцип действия которого основан на изменении размеров металлической коробки наполненной разреженным воздухом, под действием атмосферного давления. Такие барометры надежны и имеют небольшие размеры.

Читайте также:  Рассказ о профессии оператор связи

Электронный барометр – данный вид барометров работает на принципе преобразования линейных размеров традиционной анероидной барокоробки в электрический сигнал и дальнейшей обработки этого сигнала микропроцессором. Если же, вместо анероидной коробки используется тензопреобразователь, то измеряемое давление воспринимается этим чувствительным элементом, преобразуется через его деформацию, в изменение электрического сопротивления тензорезисторов тензометрического преобразователя.

Однако, поскольку тема данной статьи «Барометр-Анероид», вернемся к данному виду приборов для измерения давления и рассмотрим их более подробно.

Итак, Барометр-анероид – это прибор, который предназначается для измерения атмосферного давления механическим способом. Конструктивно анероид состоит из круглой металлической (никель-серебряной или из закаленной стали) коробки с гофрированными (ребристыми) основаниями, в которой, путем откачивания воздуха, создано сильное разрежение, возвратной пружины, передаточного механизма и стрелки указателя. Под действием атмосферного давления: его повышения или понижения, коробка, соответственно, либо сжимается, либо разгибается. При этом, при сжатии сильфонной коробки верхняя прогибающаяся поверхность начинает тянуть прикрепленную к ней пружину вниз, а при понижении атмосферного давления, верхняя часть, наоборот, выгибается и толкает пружину вверх. К возвратной пружине, при помощи передаточного механизма, прикреплена стрелка указателя, которая двигается по шкале, проградуированной в соответствии с показаниями ртутного барометра (Рисунок 2). Стоит отметить, что обычно, на практике, применяется несколько (до 10 шт.) последовательно соединенных тонкостенных гофрированных коробок с разряжением, что увеличивает амплитуду хождения стрелки по шкале.

Рисунок 2. Устройство Барометра-анероида.

Барометры-анероиды, благодаря малым размерам и отсутствию жидкости в конструкции, наиболее удобны и портативны; они широко применяются на практике.

К сожалению, барометры подвержены влиянию температуры окружающей среды и изменению упругости пружин с течением времени. Поэтому, современные барометры-анероиды оборудованы дугообразным термометром, или, так называемым компенсатором, который предназначается для внесения поправки показаний прибора на температуру.

Вообще, для получения истинного значения атмосферного давления, показания барометра-анероида нуждаются в различных поправках, определяемых сравнением с ртутным барометром. Выделяют три поправки к анероидам:

— поправка на шкалу — данная поправка зависит от того, насколько неравномерно барометр-анероид реагирует на изменение давления на различных участках шкалы,

— поправка на температуру — обуславливается зависимостью между температурой и упругостью анероидных гофрированной коробки и пружины,

Корпус барометра-анероида, обычно, изготавливается из ценных пород дерева, таких как: орех, дуб, бук, вишня или красное дерево. Такие барометры уже не просто приборы измерения атмосферного давления, а предметы интерьера. Однако, для удешевления всей конструкции, и придания большей практичности, корпус анероида может быть изготовлен из пластика или металла.

Барометры-анероиды представлены моделями:

— БАММ-1 – барометр, который предназначается для измерения атмосферного давления в наземных условиях и в помещениях. Внесен в Госреестр Средств Измерений РФ, поэтому может быть использован для проведения аттестаций рабочих мест.

— М-110 – барометр промышленного применения, внесенный в Госреестр средств измерения.

— ББ-0,5М – бытовой барометр настенного размещения. Прекрасно подходит для ориентировочных измерений за атмосферным давлением.

— БР-52 – школьный барометр-анероид, применяемый в качестве учебного пособия и для проведения опытов.

Рисунок 3. Барометр модели М67.

Для проведения более точных или более длительных измерений, а также для поверки смежных приборов на метеостанциях, метеопостах и лабораториях используются другие приборы. Они могут быть как цифровыми, так и механическими. Например, барометр БОП-1М являясь образцовым переносным барометром, как эталонное средство измерения, предназначается для поверки барометров различных конструкций и приборов общепромышленного назначения, измеряющих атмосферное давление.

БРС-1М – барометр рабочий сетевой, предназначается для точного определения абсолютного давления воздуха, имеет цифровой интерфейс RS232 для подключения к компьютеру.

Метеорологический барограф М-22А – прибор, который предназначается для определения и графической регистрации величин атмосферного давления как внутри, так и снаружи помещения, за определенный промежуток времени (Рисунок 4.).

Рисунок 4. Барограф М-22А

Автоматизированный цифровой барометр МД-20 используется на метеостанциях для долговременного измерения атмосферного давления с возможностью передачи результатов измерения на компьютер.

Источник

Открытый урок по теме «Барометр-анероид»

специалист в области арт-терапии

Муниципальное казенное общеобразовательное учреждение

«Мало- Каменская средняя общеобразовательная школа»

Подготовила и провела учитель физики

Подколзина Валентина Ивановна

Тема урока: «Барометр-анероид».

Тип урока: урок «открытия» новых знаний

Цель урока: создать условия для знакомства обучающихся с принципом действия и устройством барометра-анероида.

Образовательные: знание обучающимися устройства и принципа действия барометра, умение измерять барометром атмосферное давление.

Воспитательные: воспитание самодисциплины, взаимоуважения, устойчивого отношения к учебной деятельности и интереса к предмету, формирование коммуникативных способностей, навыков групповой работы.

Оборудование: барометр-анероид, компьютер, мультимедийный проектор, интерактивная доска, презентация, мяч, лист обратной связи, карточки со смайликами.

-Здравствуйте, ребята! Поприветствуйте наших гостей, друг друга. И я рада приветствовать вас на уроке, на котором мы продолжим открывать страницы в познании окружающего нас мира. Впереди нас ждут интересные открытия. Готовы? Да! Тогда приступим.

— У вас на столе лежат карточки со смайликами. Отметьте на них своё настроение в начале урока.

2. Мотивация учебной деятельности.

На стене висит тарелка,

По тарелке ходит стрелка.

Читайте также:  Проект мои первые народные сказки 3 класс литературное чтение

Эта стрелка наперед

(Обучающиеся не могут отгадать загадку)

— Ответить на эту загадку вы сможете в конце сегодняшнего урока.

Актуализация опорных знаний.

— Поиграем в игру «Да-нетка». Я загадала физический объект. Отгадайте, что я загадала, задав мне не более 7 вопросов. (Ученики задают учителю вопросы, на которые он отвечает только «да» или «нет»)

Это физическое тело?

Это физический прибор?

Это физическая величина?

Это величина векторная?

Это величина относится к теме «Давление»

Это атмосферное давление?

(Слайд 2)— А сейчас дайте ответы на вопросы:

Как можно определить вес воздуха? (Ученики описывают опыт по определению массы воздуха)

Почему возникает атмосферное давление? (Вследстве действия силы тяжести верхние слои воздуха сжимают нижние слои. Воздушный слой, прилегающий непосредственно к Земле, сжат больше всего и, согласно закону Паскаля, передаёт производимое на него давление по всем направлениям. В результате этого земная поверхность и тела, находящиеся на ней, испытывают давление всей толщи воздуха)

Изучение нового материала.

— На прошлом уроке мы познакомились с атмосферным давлением. А как вы думаете его можно измерить? С помощью чего? (Давление можно измерить с помощью специальных приборов)

— Верно. Для измерения атмосферного давления существуют специальные физические приборы, и сегодня на уроке вы познакомитесь с устройством и принципом их действия.

— Если к трубке с ртутью, использовавшейся в опыте Торриччели, прикрутить вертикально шкалу, то получится простейший прибор.

— Как он называется? (Ртутный барометр) (Слайд 4(1))

— Верно. Это жидкостный барометр, в котором атмосферное давление измеряется по высоте столба ртути в запаянной сверху трубке, опущенной открытым концом в сосуд с ртутью.

— Как вы думаете, ребята, безопасно было пользоваться такими приборами? (Нет. Ртуть (пары ртути) – ядовитое вещество. Кроме того, он был больших размеров и мог разбиться.)

— Ртутные барометры, использовались более двух веков. Над созданием удобного и безопасного прибора для измерения атмосферного давления работало много поколений ученых. Первый безжидкостный барометр был сконструирован лишь в середине 19 века. Его назвали барометр-анероид.

— Откройте тетради, запишите число и тему нашего урока: «Барометр-анероид»

-Сформулируйте, пожалуйста, цели нашего урока, то чем мы с вами будем сегодня заниматься. (Рассмотрим барометр-анероид, узнаем, из чего он состоит и принцип его работы)

— Вам интересно из чего он состоит? Конечно, разбирать барометр мы не будем, а выясним его строение по схеме на слайде: Слайд 4(2))

— Устройство барометра-анероида запишем в тетрадь.

Главная часть его– металлическая коробочка 1 с волнистой поверхностью. Из этой коробочки откачан воздух, а, чтобы атмосферное давление не раздавило коробочку, её крышку пружиной 2 оттягивают вверх. При увеличения атмосферного давления крышка прогибается вниз и натягивает пружину. При уменьшении давления пружина выпрямляет крышку. К пружине с помощью передаточного механизма 3 прикреплена стрелка – указатель 4, которая передвигается вправо и влево при изменении давления. Под стрелкой укреплена шкала, деления которой нанесены по показаниям ртутного барометра.

(Слайд 5) На ваш взгляд, ребята, барометры – анероиды надежны? (Да)

-А они компактны по сравнению с ртутными. (Да)

-Скажите, пожалуйста, в каких единицах измеряется атмосферное давление? (Давление измеряют в паскалях, гектопаскалях, мм.рт.ст.)

-Как перевести мм рт. ст. в паскали? (Нужно умножить на 133,3)

-Как перевестипаскали в гектопаскали? (Разделить на 100)

— Барометр- анероид имеет две шкалы: верхняя показывает давление в гектопаскалях, а нижняя – в мм рт. ст.

— Какое давление на барометре в нашем случае? (990 гПа или 745 мм рт.ст.)

5. ФИЗКУЛЬТМИНУТКА (Слайд 6)

(Слайд 7) Барометр-анероид – очень чувствительный прибор. Например, поднимаясь на последний этаж 9-ти этажного дома, из-за различия атмосферного давления на различной высоте мы обнаружим уменьшение атмосферного давления на 2-3 мм рт. ст.

(Слайд 8) – С высотой давление и плотность воздуха уменьшается, поэтому атмосферное давление уменьшается по мере увеличения высоты над уровнем моря. Справедливость этого была доказана на горе Пью-де-Дом. Паскаль доказал, что меньший столб воздуха оказывает меньшее давление.

(Слайд 11)— Барометр так же может служить для определения высоты полёта самолёта. Такой барометр называют барометрический высотометр или альтиметр.

— Как вы думаете, какой из барометров: водяной или ртутный показывает более точное давление и почему? (Ртутный, так как плотность воды меньше плотности ртути и вода зимой может замёрзнуть)

(Слайд 13)— Итак, вы теперь можете ответить на загадку, заданною мной в начале урока? (Да. Это барометр) (Слайд 14)

— Сегодня на уроке мы познакомились с устройством и принципом действием барометра – анероида. А сейчас поиграем в игру «Аукцион». Назовите мне элементы, из которых состоит барометр–анероид. (Учитель бросает мяч, и обучающиеся называют по очереди элементы барометра-анероида)

Учащиеся 7 класса измеряли атмосферное давление в школе – 756 мм рт.ст. На какой высоте относительно реки находится их школа?

Дано: Решение:

р1=756 мм рт.ст. 1) Найдем разницу давлений:

1 мм рт.ст., следовательно:

h = =48 м

Источник

Познавательное и интересное